CLUSTER CHEMISTRY

XXXIX *. GOLD-RUTHENIUM CLUSTERS WITH SULPHUR LIGANDS: $\left.\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{\mathbf{9}}\left(\mathbf{P P h}_{3}\right)$ and $\mathrm{Ru}_{3} \mathrm{Au}_{\mathbf{2}}\left(\mu_{3}-\mathbf{S}\right)(\mathbf{C O})_{\mathbf{9}}\left(\mathbf{P P h}_{3}\right)_{\mathbf{2}}$

MICHAEL I. BRUCE*, OMAR BIN SHAWKATALY,
Jordan Laboratories, Department of Physical and Inorganic Chemistry, University of Adelaide, Adelaide 5000 (Australia)
and BRIAN K. NICHOLSON*
Department of Chemistry, University of Waikato, Hamilton (New Zealand)
(Received October 26th, 1984)

Abstract

Summary $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ is deprotonated by $\mathrm{K}\left[\mathrm{HBBu}_{3}^{\mathrm{s}}\right]$ to give cluster anions which react with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]^{+}$or with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{Tl}^{+}$to give $\mathrm{HRu} \mathrm{Au}^{\mathrm{Au}}\left(\mu_{3^{-}}\right.$ $\mathrm{S})(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$ (1) and $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}$ (3). A similar sequence with $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$ leads to $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$ (2) as the main product although some 1 also forms, indicating S-C cleavage competes with deprotonation of $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$ by $\left[\mathrm{HBBu}_{3}\right]^{-}$. The X-ray crystal structures of $\mathbf{1 , 2}$ and 3 are described; (1) and (2) have "butterfly" AuRu_{3} cores with markedly different hinge angles of 119 and 148° respectively, while 3 has a trigonal-bipyramidal $\mathrm{Au}_{2} \mathrm{Ru}_{3}$ skeleton. All three clusters have the sulphur atom symmetrically bridging the Ru_{3} triangular face.

There is now a well-established area of chemistry involving mixed-metai clusters with one, two or three gold atoms incorporated in the metal framework [1,2]. Most interest has centred on gold-ruthenium [3-14] and gold-osmium [15-21] complexes, although species with vanadium [22], manganese [23], rhenium [24], iron [25-30], iridium [31] and platinum [32] are also known, together with several examples which contain more than one type of transition metal [33-37]. An increasing number of clusters which contain ligands such as μ_{3} - $\mathrm{COMe}[4], \mu_{3}-\mathrm{C}_{2} \mathrm{R}$ or $\mu_{3}-\mathrm{C}=\mathrm{CHR}[6,14]$, μ_{3}-cyclododecatrienyl [13], μ_{3}-PR [3] and μ_{3}-S [10], in addition to CO, tertiary phosphine or $\eta-\mathrm{C}_{5} \mathrm{H}_{5}$, have been described.

[^0]We now wish to report on our preparation and structural-determination of three related sulphur-containing clusters, namely $\mathrm{HRu}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$ (1), $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$ (2), and $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)-(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}$, (3). During the course of this work 1 and 3 were prepared independently by an alternative route involving methane elimination between $\mathrm{Ph}_{3} \mathrm{PAuMe}$ and $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$, and the structure of a $\mathrm{Ph}_{3} \mathrm{P}$-substituted derivative of 3 was published [10].

(1)

(2)

(3)

Experimental

General procedures have been described previously [13]. Starting materials $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ [38], $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{l}}\right)(\mathrm{CO})_{9}$ [38] and [$\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}$] $\left[\mathrm{BF}_{4}\right]$ [39], were prepared by literature methods. K-Selectride, $\mathrm{K}\left[\mathrm{HBBu}_{3}^{\mathrm{s}}\right], 0.5 \mathrm{~mol}^{-1}$ in THF, was purchased from Aldrich Chemicals. Infrared spectra were recorded as cyclohexane solutions. Preparative chromatography was performed on silica gel (Merck, PF_{254}) plates. Light petroleum refers to a $60-70^{\circ} \mathrm{C}$ boiling fraction.

Reaction of $\left[\mathrm{HR} u_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{-}$with $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]^{+}$
A solution of $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ (200 mg . 0.34 mmol) in THF (15 ml) was treated with $\mathrm{K}\left[\mathrm{HBBu}_{3}{ }_{3}\right](0.34 \mathrm{mmol})$. After 2 min the orange solution was treated with solid $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]\left[\mathrm{BF}_{4}\right](167 \mathrm{mg}, 0.113 \mathrm{mmol})$. After ca. 20 h , solvent was evaporated. A benzene extract of the residue was filtered and chromatographed, eluting with benzene / cyclohexane ($1 / 1$). Band 1 ($R_{f} 0.83$), orange-yellow, (20 mg). $\nu(\mathrm{CO}) 2088 \mathrm{~m}, 2066 \mathrm{vs}, 2040 \mathrm{vs}, 2024 \mathrm{w}, 2004 \mathrm{sh}, 1998 \mathrm{~s}, 1985 \mathrm{w}, 1983 \mathrm{~m} \mathrm{~cm}{ }^{-1}$, not identified. Band $2\left(R_{f} 0.72\right)$, orange $\mathrm{HRu}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)(10 \mathrm{mg}, 3 \%)$, m.p. $159^{\circ} \mathrm{C}$ (dec), recrystallised from heptane. (Found: $\mathrm{C}, 31.21 ; \mathrm{H}, 1.22 . \mathrm{C}_{27} \mathrm{H}_{16} \mathrm{Au}$ $\mathrm{O}_{9} \mathrm{PRu}_{3} \mathrm{~S}$ calcd.: $\mathrm{C}, 30.95$; H, 1.54\%). $\boldsymbol{v (C O)} 2084 \mathrm{~s}, 2063 \mathrm{vs}, 2050 \mathrm{~m}, 2038 \mathrm{vs}, 2010 \mathrm{~m}$, 1996vs, 1191m, $1958 \mathrm{~m} \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 7.5 \mathrm{~m}, 15 \mathrm{H}, \mathrm{Ph} ;-19.85 \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{Ru}-H$. Band $3\left(R_{f} 0.62\right)$ red, $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2},(70 \mathrm{mg}, 14 \%)$ m.p. $186^{\circ} \mathrm{C}$ (dec), recrystallised from diethyl ether. (Found: C, 35.70; H, 1.80; $\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{Au}_{2} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}$ calcd.: C, 35.87; H, 2.07\%.) $\boldsymbol{\nu}(\mathrm{CO}) 2060 \mathrm{~s}$, 2035vs, 2025vs, $1986 \mathrm{w}, 1973 \mathrm{~s}, 1964 \mathrm{~s} \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 7.1 \mathrm{~m}, \mathrm{Ph}$. Band 4, $\left(R_{f} 0.48\right)$, purple, (trace only), $\nu(\mathrm{CO}) 2061 \mathrm{~s}, 2032 \mathrm{vs}, 2020 \mathrm{vs}, 2002 \mathrm{~m}, 1993 \mathrm{~m}, 1984 \mathrm{~m}, 1970 \mathrm{~m}$, $1962 \mathrm{~s}, \mathrm{~cm}^{-1}$, not identified.

Reaction of $\left[\mathrm{HR} u_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{-}$with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{TlPF}_{6}$
A solution of $\left[\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{-}(0.51 \mathrm{mmol})$ in THF (20 ml), prepared as above, was treated sequentially with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)(252 \mathrm{mg}, 0.51 \mathrm{mmol})$ and TlPF_{6}
($178 \mathrm{mg}, 0.51 \mathrm{mmol}$). After stirring overnight TlCl was filtered and the filtrate evaporated in vacuo. The residue was extracted with acetone and chromatographed, eluting with acetone/light petroleum (3/7). Band 1 , yellow, $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})$; Band $2\left(R_{f} 0.82\right.$), orange, $\mathrm{HRu}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)(150 \mathrm{mg}, 28 \%)$. Band 3, red, $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}(99 \mathrm{mg}, 13 \%)$.
Reaction of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{SBu} u^{t}\right)\left(\mathrm{CO}_{9}\right]^{-}\right.$with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / T l P F_{6}$
$\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}(150 \mathrm{mg}, 0.23 \mathrm{mmol})$ was dissolved in THF $(15 \mathrm{ml})$ and $\mathrm{K}\left[\mathrm{HBBu}^{\mathrm{s}}{ }_{3}\right](0.23 \mathrm{mmol})$ was added. After 5 min conversion to $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{SBu}\right)(\mathrm{CO})_{9}\right]^{-}$ was complete (TLC); $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ ($115 \mathrm{mg}, 0.23 \mathrm{mmol}$) and TlPF_{6} ($81 \mathrm{mg}, 023$ mmol) were added and the mixture stirred for 2 h . After filtration and evaporation, the residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Chromatography, eluting with acetone/light petroleum ($3 / 7$) gave 7 bands. Band $1\left(R_{f} 0.96\right), 3,\left(R_{f} 0.69\right)$ and $7\left(R_{f} 0.31\right)$ were present in trace amounts only, and were not identified. Band 2 ($R_{f} 0.89$), traces, $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{t}\right)(\mathrm{CO})_{9}$. Band 4 ($R_{f} 0.64$) yellow/orange, $\mathrm{HRu}_{3} \mathrm{Au}\left(\mu_{3^{-}}\right.$ $\mathrm{S})(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right),(10 \mathrm{mg}, 4 \%)$ band $5\left(R_{f} 0.58\right)$, orange, $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$ $\left(\mathrm{PPh}_{3}\right),(72 \mathrm{mg}, 28 \%)$, m.p. $154^{\circ} \mathrm{C}$ (dec), recrystallised from heptane. (Found: C, $33.82 ; \mathrm{H}, 1.86 ; \mathrm{C}_{31} \mathrm{H}_{24} \mathrm{AuO}_{9} \mathrm{PRu}_{3} \mathrm{~S}$ calcd.: $\left.\mathrm{C}, 33.73 ; \mathrm{H}, 2.19 \%\right) \nu(\mathrm{CO}) 2066 \mathrm{~s}$, 2030vs, 2024sh, 1998vs, 1983sh, 1975s, 1964s, $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR: $\delta\left(\mathrm{CDCl}_{3}\right) 7.51-7.24$ $\mathrm{m}, 15 \mathrm{H}, \mathrm{Ph} ; 1.48 \mathrm{~S}, 9 \mathrm{H}, \mathrm{Bu}$. Band $6\left(R_{f} 0.39\right)$, red, $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}$, ($11 \mathrm{mg}, 3 \%$).

Reaction of $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{t}\right)(\mathrm{CO})_{9}$ with $\mathrm{K}_{\left[\mathrm{HBBu}_{3}{ }_{3}\right] \text { and subsequent protonation with }}$ $\mathrm{H}_{3} \mathrm{PO}_{4}$

A solution of $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\right]^{-}$was generated from $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}{ }^{t}\right)(\mathrm{CO})_{9}$ $(100 \mathrm{mg}, 0.155 \mathrm{mmol})$ and $\mathrm{K}\left[\mathrm{HBBu}^{5}{ }_{3}\right](0.155 \mathrm{mmol})$ in THF (10 ml) for 5 min .

TABLE 1
CRYSTAL DATA FOR COMPLEXES 1-3

	1	2	3
Formula:	$\mathrm{C}_{27} \mathrm{H}_{16} \mathrm{AuO}_{9} \mathrm{PRu}_{3} \mathrm{~S}$	$\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{AuO}_{9} \mathrm{PRu}_{3} \mathrm{~S}$	$\mathrm{C}_{45} \mathrm{H}_{30} \mathrm{Au}_{2} \mathrm{O}_{9} \mathrm{P}_{2} \mathrm{Ru}_{3} \mathrm{~S}$
M_{r} :	1047.64	1103.75	1505.90
Crystal class:	Monoclinic	Triclinic	Monoclinic
Space group:	$P 2{ }_{1} / n$	$P \overline{1}$	$P 2_{1} / c$
$a(\mathrm{~A})$	12.983(2)	10.307(4)	12.763(3)
$b(\AA)$	17.646(4)	16.082(2)	27.568(5)
$c(\dot{\text { A }}$)	14.962(2)	12.781(3)	15.617(4)
α (degrees)	90	109.86(2)	90
β (degrees)	106.05(1)	111.66(2)	121.81(2)
γ (degrees)	90	95.55(2)	90
$U\left(\dot{\AA}^{3}\right)$	3294.2	1791.1	4669.5
Z	4	2	4
$D_{\mathrm{c}}\left(\mathrm{g} \mathrm{cm}^{-3}\right)$	2.11	2.05	2.14
$\mu\left(\mathrm{Mo}-K_{\alpha}\right)\left(\mathrm{cm}^{-1}\right)$	58	54	73
$F(000)$	1968	1048	2835
Scan range	$3^{\circ}<2 \theta<45^{\circ}$	$0^{\circ}<2 \theta<45^{\circ}$	$1^{\circ}<2 \theta<43^{\circ}$
Unique data	4253	5032	5271
Data, $I>3 \sigma(I)$	3337	4295	3345
Final R, R_{w} Weight,	0.042,0.044	0.031,0.035	0.045,0.045
$w=1.0\left[\sigma^{2} F+p F^{2}\right]^{-1}$	$p=0.0005$	$p=0.0002$	$p=0.0012$

TABLE 2
FINAL POSITIONAL PARAMETERS FOR AuRu $u_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{H})(\mathrm{CO})_{9}\left(\mathrm{Ph}_{3} \mathrm{P}\right)(1)$

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
$\mathrm{Au}(1)$	$0.2522(1)$	$0.2378(1)$	$0.6055(1)$	$\mathrm{O}(7)$	$-0.127(1)$	$-0.015(1)$	$0.619(1)$
$\mathrm{Ru}(1)$	$0.0448(1)$	$0.2193(1)$	$0.6158(1)$	$\mathrm{O}(8)$	$0.167(1)$	$-0.0328(8)$	$0.8579(8)$
$\mathrm{Ru}(2)$	$0.2322(1)$	$0.1781(1)$	$0.7686(1)$	$\mathrm{O}(9)$	$0.223(1)$	$-0.0145(7)$	$0.5817(9)$
$\mathrm{Ru}(3)$	$0.0878(1)$	$0.0678(1)$	$0.6891(1)$	$\mathrm{H}(1)$	$0.037(0)$	$0.118(0)$	$0.581(0)$
$\mathrm{P}(1)$	$0.3620(2)$	$0.2732(2)$	$0.5156(2)$	$\mathrm{C}(11)$	$0.4774(6)$	$0.3292(5)$	$0.5743(6)$
$\mathrm{S}(1)$	$0.0517(3)$	$0.1757(2)$	$0.7667(2)$	$\mathrm{C}(12)$	$0.5185(6)$	$0.3850(5)$	$0.5276(6)$
$\mathrm{C}(1)$	$0.054(1)$	$0.2333(9)$	$0.491(1)$	$\mathrm{C}(13)$	$0.6098(6)$	$0.4254(5)$	$0.5743(6)$
$\mathrm{C}(2)$	$-0.110(1)$	$0.216(1)$	$0.577(1)$	$\mathrm{C}(14)$	$0.6600(6)$	$0.4101(5)$	$0.6677(6)$
$\mathrm{C}(3)$	$0.054(1)$	$0.325(1)$	$0.643(1)$	$\mathrm{C}(15)$	$0.6189(6)$	$0.3544(5)$	$0.7143(6)$
$\mathrm{C}(4)$	$0.347(1)$	$0.1333(9)$	$0.731(1)$	$\mathrm{C}(16)$	$0.5276(6)$	$0.3139(5)$	$0.6676(6)$
$\mathrm{C}(5)$	$0.285(1)$	$0.134(1)$	$0.889(1)$	$\mathrm{C}(21)$	$0.2892(7)$	$0.3271(5)$	$0.4163(6)$
$\mathrm{C}(6)$	$0.285(1)$	$0.2763(9)$	$0.808(1)$	$\mathrm{C}(22)$	$0.2927(7)$	$0.3095(5)$	$0.3263(6)$
$\mathrm{C}(7)$	$-0.050(2)$	$0.021(1)$	$0.645(1)$	$\mathrm{C}(23)$	$0.2303(7)$	$0.3504(5)$	$0.2508(6)$
$\mathrm{C}(8)$	$0.138(1)$	$0.004(1)$	$0.795(1)$	$\mathrm{C}(24)$	$0.1644(7)$	$0.4088(5)$	$0.2653(6)$
$\mathrm{C}(9)$	$0.170(1)$	$0.0150(9)$	$0.621(1)$	$\mathrm{C}(25)$	$0.1609(7)$	$0.4265(5)$	$0.3553(6)$
$\mathrm{O}(1)$	$0.0487(8)$	$0.2399(8)$	$0.4138(8)$	$\mathrm{C}(26)$	$0.2233(7)$	$0.3856(5)$	$0.4308(6)$
$\mathrm{O}(2)$	$-0.1992(9)$	$0.214(1)$	$0.5524(9)$	$\mathrm{C}(31)$	$0.4176(7)$	$0.1928(4)$	$0.4709(6)$
$\mathrm{O}(3)$	$0.057(1)$	$0.3862(9)$	$0.666(1)$	$\mathrm{C}(32)$	$0.3544(7)$	$0.1277(4)$	$0.4509(6)$
$\mathrm{O}(4)$	$0.4143(9)$	$0.0998(7)$	$0.7119(9)$	$\mathrm{C}(33)$	$0.3921(7)$	$0.0639(4)$	$0.4147(6)$
$\mathrm{O}(5)$	$0.319(1)$	$0.1112(7)$	$0.9625(8)$	$\mathrm{C}(34)$	$0.4929(7)$	$0.0652(4)$	$0.3986(6)$
$\mathrm{O}(6)$	$0.318(1)$	$0.3357(7)$	$0.8311(9)$	$\mathrm{C}(35)$	$0.5561(7)$	$0.1303(4)$	$0.4186(6)$
					$\mathrm{C}(36)$	$0.5184(7)$	$0.1941(4)$

TABLE 3
FINAL POSITIONAL PARAMETERS FOR AuRu $3_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\left(\mathrm{Ph}_{3} \mathrm{P}\right)(2)$

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
$\mathrm{Au}(1)$	$0.3171(0)$	$0.2492(0)$	$0.4974(0)$	$\mathrm{O}(22)$	$-0.1283(6)$	$-0.0098(4)$	$0.0411(5)$
$\mathrm{Ru}(1)$	$0.1732(1)$	$0.3547(0)$	$0.3855(0)$	$\mathrm{O}(23)$	$0.3493(6)$	$0.0975(4)$	$0.2452(5)$
$\mathrm{Ru}(2)$	$0.0850(1)$	$0.1531(0)$	$0.2701(0)$	$\mathrm{O}(31)$	$0.3337(6)$	$0.2427(4)$	$0.1116(6)$
$\mathrm{Ru}(3)$	$0.0525(1)$	$0.2569(0)$	$0.1313(0)$	$\mathrm{O}(32)$	$0.0099(7)$	$0.4165(4)$	$0.0553(6)$
$\mathrm{S}(1)$	$-0.0530(2)$	$0.2570(1)$	$0.2616(1)$	$\mathrm{O}(33)$	$-0.1349(6)$	$0.1101(4)$	$-0.1251(5)$
$\mathrm{P}(1)$	$0.5007(2)$	$0.2557(1)$	$0.6721(2)$	$\mathrm{C}(51)$	$0.5703(5)$	$0.3685(2)$	$0.7963(4)$
$\mathrm{C}(1)$	$-0.2329(8)$	$0.2596(5)$	$0.2619(7)$	$\mathrm{C}(52)$	$0.6299(5)$	$0.3807(2)$	$0.9194(4)$
$\mathrm{C}(2)$	$-0.259(1)$	$0.3484(8)$	$0.262(1)$	$\mathrm{C}(53)$	$0.6806(5)$	$0.4686(2)$	$1.0128(4)$
$\mathrm{C}(3)$	$-0.222(1)$	$0.256(1)$	$0.380(1)$	$\mathrm{C}(54)$	$0.6717(5)$	$0.5443(2)$	$0.9831(4)$
$\mathrm{C}(4)$	$-0.340(1)$	$0.1776(8)$	$0.150(1)$	$\mathrm{C}(55)$	$0.6121(5)$	$0.5321(2)$	$0.8599(4)$
$\mathrm{C}(11)$	$0.3648(9)$	$0.3825(5)$	$0.4025(7)$	$\mathrm{C}(56)$	$0.5614(5)$	$0.4442(2)$	$0.7665(4)$
$\mathrm{C}(12)$	$0.1889(8)$	$0.3949(5)$	$0.5522(7)$	$\mathrm{C}(61)$	$0.6549(4)$	$0.2228(3)$	$0.6513(4)$
$\mathrm{C}(13)$	$0.1407(9)$	$0.4624(5)$	$0.3661(8)$	$\mathrm{C}(62)$	$0.6312(4)$	$0.1378(3)$	$0.5590(4)$
$\mathrm{C}(21)$	$0.0665(8)$	$0.1019(4)$	$0.3804(7)$	$\mathrm{C}(63)$	$0.7477(4)$	$0.1075(3)$	$0.5433(4)$
$\mathrm{C}(22)$	$-0.0480(7)$	$0.0510(5)$	$0.1249(6)$	$\mathrm{C}(64)$	$0.8880(4)$	$0.1622(3)$	$0.6199(4)$
$\mathrm{C}(23)$	$0.2526(7)$	$0.1199(4)$	$0.2565(6)$	$\mathrm{C}(65)$	$0.9117(4)$	$0.2472(3)$	$0.7122(4)$
$\mathrm{C}(31)$	$0.2286(8)$	$0.2488(4)$	$0.1203(7)$	$\mathrm{C}(66)$	$0.7951(4)$	$0.2775(3)$	$0.7278(4)$
$\mathrm{C}(32)$	$0.0249(8)$	$0.3582(5)$	$0.0852(7)$	$\mathrm{C}(71)$	$0.4417(5)$	$0.1828(3)$	$0.7362(4)$
$\mathrm{C}(33)$	$-0.0681(8)$	$0.1649(5)$	$-0.0292(7)$	$\mathrm{C}(72)$	$0.3164(5)$	$0.1909(3)$	$0.7528(4)$
$\mathrm{O}(11)$	$0.4788(6)$	$0.3992(4)$	$0.4073(6)$	$\mathrm{C}(73)$	$0.2650(5)$	$0.1368(3)$	$0.8015(4)$
$\mathrm{O}(12)$	$0.1921(8)$	$0.4209(4)$	$0.6483(5)$	$\mathrm{C}(74)$	$0.3390(5)$	$0.0746(3)$	$0.8335(4)$
$\mathrm{O}(13)$	$0.1240(8)$	$0.5303(4)$	$0.3566(7)$	$\mathrm{C}(75)$	$0.4642(5)$	$0.0664(3)$	$0.8169(4)$
$\mathrm{O}(21)$	$0.0493(7)$	$0.0628(4)$	$0.4366(6)$	$\mathrm{C}(76)$	$0.5156(5)$	$0.1206(3)$	$0.7682(4)$

Complete conversion was confirmed by TLC. $\mathrm{H}_{3} \mathrm{PO}_{4}$ (5 drops) was added and the mixture stirred for one hour. After evaporation, a $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{ml})$ extract of the residue was washed with water ($5 \times 10 \mathrm{ml}$) and dried by azeotropic distillation with benzene and ethanol. Subsequent chromatography (acetone/light petroleum, (1/9)) gave 3 bands. Band 1 ($R_{f} 0.92$), yellow, trace. $\nu(\mathrm{CO}) 2068 \mathrm{vs}, 2044 \mathrm{~m}, 2028 \mathrm{~s}, 2010 \mathrm{~m}$, $1979 \mathrm{~m} \mathrm{~cm}^{-1}$ not identified. Band $2\left(R_{f} 0.83 \mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO}) 9(9 \mathrm{mg}, 10 \%)\right.$. Band 3 , $\left(R_{f} 0.69\right) \mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}(50 \mathrm{mg}, 50 \%)$.
X-Ray Crystal structure determination. Suitable crystals of $\mathbf{1 , 2}$ or 3 were mounted on a Nicolet P3 diffractometer, and accurate lattice parameters were determined using 25 high-angle reflections with Mo- K_{α} X-radiation; data are summarised in Table 1. The structures were solved by direct methods, difference map techniques, and routinely refined by full-matrix least-squares methods. Phenyl rings were treated as rigid groups with isotropic temperature factors for the carbon atoms and with hydrogen atoms in calculated positions; all other atoms were assigned anisotropic thermal parameters. For 1, the hydrido ligand was located directly as the highest peak in the penultimate difference map and was included in
(Continued on p. 434)
TABLE 4
FINAL POSITIONAL PARAMETERSTOR Au $\mathrm{FA}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}(3)$

Atom	x / a	y / b	z / c	Atom	x / a	y / b	z / c
$\overline{\mathrm{Au}}$ (1)	0.1787(1)	0.8487(1)	0.2160(1)	C(111)	-0.0476(11)	0.7905(3)	-0.0124(9)
$A u(2)$	0.0565(1)	$0.9227(1)$	0.2721(1)	C(122)	$0.2425(10)$	$0.7901(5)$	-0.0066(8)
$\mathrm{Ru}(1)$	0.2505(1)	0.9469(1)	0.2386(1)	C(123)	$0.3443(10)$	0.7886(5)	-0.0173(8)
$\mathrm{Ru}(2)$	0.2958(1)	0.8845(1)	0.4119(1)	C(124)	0.4597(10)	0.7755(1)	0.0642(8)
$\mathrm{Ru}(3)$	0.2445(2)	0.9865(1)	0.4058(1)	C(125)	$0.4734(10)$	$0.7638(5)$	$0.1565(8)$
$\mathrm{P}(1)$	-0.1534(4)	0.9133(2)	0.2026(4)	C(126)	$0.3717(10)$	0.7653(5)	$0.1673(8)$
$\mathrm{P}(2)$	0.1319(5)	$0.7835(3)$	0.1096(4)	C(121)	0.2562(10)	0.7784(5)	$0.0857(8)$
S(1)	0.4124 (5)	0.9498(2)	0.4083(4)	C(132)	$0.1797(11)$	0.6829(5)	0.1468(9)
$\mathrm{C}(11)$	0.9382(20)	0.9438(2)	0.1161(15)	C(133)	0.1682(11)	0.6384(5)	0.1838(9)
O(12)	$0.0079(15)$	0.9510(5)	0.0371(11)	C(134)	0.0999(11)	0.6352(5)	0.2298(9)
$\mathrm{C}(12)$	$0.2894(21)$	1.0084(8)	0.2103(17)	C(135)	$0.0429(11)$	0.6764(5)	0.2388(9)
$\mathrm{O}(12)$	$0.3184(17)$	1.0438(6)	0.1948(13)	C(136)	0.0544(11)	0.7209(5)	$0.2018(9)$
C(13)	$0.3406(20)$	0.9128(8)	$0.1900(15)$	C(131)	0.1228(11)	0.7241 (5)	$0.1558(9)$
O(13)	$0.3960(15)$	0.8969(8)	0.1587(13)	C(212)	-0.3277(12)	-0.8838(4)	0.0045(9)
C(21)	$0.1711(19)$	0.8415(7)	$0.3952(14)$	C(213)	-0.3861(12)	.0.8492(4)	-0.0716(9)
$\mathrm{O}(21)$	$0.1004(14)$	0.8141(6)	0.3932(11)	C(214)	-0.3473(12)	0.8009(4)	-0.0524(9)
$\mathrm{C}(22)$	0.4068(19)	0.8371(8)	0.4169(14)	C(215)	-0.2501(12)	0.7874(4)	0.0429(9)
$\mathrm{C}(22)$	0.4802(14)	0.8110(6)	0.4233(13)	C(216)	-0.1917(12)	0.8220(4)	0.1189(9)
C(23)	0.3698(19)	0.8865(7)	$0.5542(17)$	C(211)	-0.2306(12)	0.8703(4)	0.0998(9)
$\mathrm{O}(23)$	$0.4130(18)$	0.8854(7)	$0.6367(12)$	C(222)	-0.3093(10)	0.8708(4)	0.2595(9)
C(31)	0.0868(18)	1.0017(8)	0.3815(19)	C(223)	-0.3401(10)	0.8572(4)	0.3296(7)
O(31)	-0.0044(16)	1.0165(6)	0.3719(15)	C(224)	-0.2564(10)	0.8647(4)	$0.4322(7)$
C(32)	0.2781(22)	1.0510(9)	0.3838(16)	C(225)	-0.1421(10)	0.8858(4)	$0.4647(7)$
$\mathrm{O}(32)$	0.2902(18)	1.0907(6)	$0.3727(13)$	C(226)	-0.1113(10)	0.8994(4)	0.3946(7)
C(33)	$0.3161(22)$	0.9938(8)	$0.5471(22)$	C(221)	-0.1949(10)	0.8919(4)	0.2920(7)
O(33)	0.3603(18)	1.0006(7)	$0.6319(14)$	C(232)	-0.2012(11)	1.0005(5)	0.1004(9)
C(112)	-0.0702(11)	0.7506(3)	-0.0728(9)	C(233)	-0.2609(11)	1.0448(5)	0.0625(9)
C(113)	-0.1729(11)	0.7576 (3)	$-0.1694(9)$	C(234)	-0.3549(11)	1.0590(5)	0.0776(9)
C(114)	-0.2130(11)	0.8045(3)	-0.2055(9)	C(235)	-0.3891(11)	1.0290(S)	0.1307(9)
C(115)	-0.1504(11)	0.8444(3)	$-0.1450(9)$	C(236)	-0.3294(11)	0.9847(5)	0.1685(9)
C(116)	-0.0476(11)	0.8374(3)	$-0.0484(9)$	C(231)	-0.2355(11)	0.9705(5)	$0.1534(9)$

Fig. 1. A view of $\mathrm{HRu}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$.

TABLE 5
SELECTED BOND PARAMETERS FOR $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{H})(\mathrm{CO})_{9} \mathrm{PPh}_{3}$ (1), $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3^{-}}\right.$ $\left.\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9} \mathrm{PPh}_{3}$, (2), AND Ru $3_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}$ (3)

	Bond lengths (\AA)				Bond angles (degrees)		
	1	2	3		1	2	3
$\overline{\mathrm{Au}}(1)-\mathrm{Ru}(1)$	2.759(1)	2.773(1)	2.821(2)	$\mathrm{Ru}(1)-\mathrm{Au}(1)-\mathrm{Ru}(2)$	64.5(1)	64.4(1)	64.6(1)
$A u(1)-R u(2)$	$2.736(1)$	2.766 (1)	$2.783(2)$	$\mathrm{Au}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2)$	57.3(1)	57.7(1)	57.1(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(2)$	2.933(1)	2.950(1)	2.996 (2)	$\mathrm{Au}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(1)$	58.1(1)	57.9(1)	58.3(1)
$\mathrm{Ru}(1)-\mathrm{Ru}(3)$	$2.885(1)$	2.782(1)	2.869(2)	$\mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)$	61.1(1)	58.0(1)	58.4(1)
$\mathrm{Ru}(2)-\mathrm{Ru}(3)$.	2.737(1)	2.780(1)	2.878(2)	$\mathrm{Ru}(2)-\mathrm{Ru}(1)-\mathrm{Ru}(3)$	56.1(1)	57.9(1)	58.7(1)
$\mathrm{Ru}(1)-\mathrm{S}(1)$	2.363(4)	2.298(2)	2.351(5)	$\mathrm{Ru}(1)-\mathrm{Ru}(3)-\mathrm{Ru}(2)$	62.8(1)	64.1(1)	62.8(1)
$\mathrm{Ru}(2)-\mathrm{S}(1)$	$2.336(4)$	2.302(2)	$2.355(5)$	$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(2)$	77.2(1)	79.8(1)	79.1(1)
$\mathrm{Ru}(3)-\mathrm{S}(1)$	2.344(4)	2.300(2)	2.352(6)	$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{Ru}(3)$	75.6(1)	74.5(1)	75.2(1)
$\mathrm{Ru}(1)-\mathrm{H}(1)$	1.84(2)			$\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{Ru}(3)$	71.6(1)	74.3(1)	75.4(2)
$\mathrm{Ru}(2)-\mathrm{H}(1)$	1.79(2)			$\mathrm{Ru}(1)-\mathrm{S}(1)-\mathrm{C}(1)$		133.1(2)	
$\mathrm{Au}(2)-\mathrm{Au}(1)$			2.967(2)	$\mathrm{Ru}(2)-\mathrm{S}(1)-\mathrm{C}(1)$		133.4(2)	
$A u(2)-R u(1)$			2.867(2)	$\mathrm{Ru}(3)-\mathrm{S}(1)-\mathrm{C}(1)$		137.3(2)	
$A u(2)-R u(2)$			2.859(2)				
$\mathrm{Au}(2)-\mathrm{Ru}(3)$			2.817(2)				
$\mathrm{C}(1)-\mathrm{S}(1)$		1.861(7)					

Dihedral angles (degrees)

All other bonds were unexceptional:
$\mathrm{Ru}-\mathrm{C}(1.90 \AA), \mathrm{C}-\mathrm{O}(1.14 \AA)$,
$\mathrm{Au}-\mathrm{P}(2.29 \AA), \mathrm{P}-\mathrm{C}(1.81 \AA)$ and $\mathrm{C}-\mathrm{C}(1.50 \AA)$.
$\left[\begin{array}{l}\mathrm{Au}(1)-\mathrm{Ru}(1)-\mathrm{Ru}(2) \\ \mathrm{Ru}(1)-\mathrm{Ru}(2)-\mathrm{Ru}(3)\end{array}\right] \quad 119.4 \quad 147.5 \quad 146.5$

Fig. 2. The structure of $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$.

Fig. 3. The structure of $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3}-\mathbf{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}$.
the final refinement with fixed parameters. For all three analyses final difference maps showed no significant features.

All calculations were performed using the SHELX-76 programmes [40]. Final positional parameters and selected bond length and angles are given in Tables 2-5, while perspective views of each of the molecules are shown in Fig. 1-3. Tables of thermal parameters and structure factors are available on request (BKN).

Results and discussion

Preparations

The cluster $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ is rapidly and cleanly deprotonated by $\mathrm{K}\left[\mathrm{HBBu}_{3}{ }^{5}\right]$ in THF to give the anions $\left[\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{-}$and $\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{2-}$ (eq. 1).
$\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9} \xrightarrow[-\mathrm{H}_{2}, \mathrm{BBu}_{3}{ }^{5}]{\mathrm{K}\left[\mathrm{HBBu}_{3}{ }^{5}\right]}\left[\mathrm{HRu}_{3}\left(\mu_{3} \mathrm{~S}\right)(\mathrm{CO})_{9}\right]^{-} \xrightarrow[-\mathrm{H}_{2}, \mathrm{BBu}_{3}{ }^{5}]{\mathrm{K}\left[\mathrm{HBBu}^{5}\right]}\left[\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{2-}$

This route to cluster anions is proving to have wide applicability $[7,13]$ and is generally simpler and more specific than the deprotonation reactions with other bases, such as KOH . The degree of deprotonation can be largely controlled by stoichiometric addition of $\mathrm{K}\left[\mathrm{HBBu}_{3}^{5}\right]$. Addition of $\left[\mathrm{O}\left\{\mathrm{Au}\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]^{+}$to the anion results in formation of the mixed metal clusters 1 and 3 (eq. 2 and 3), which were

$$
\begin{align*}
& {\left[\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\right]^{-} \xrightarrow{\left[\mathrm { O } \left\{\mathrm{Au}^{\left.\left.\left(\mathrm{PPh}_{3}\right)\right\}_{3}\right]^{+}} \mathrm{AuRu}_{3}\left(\mu_{-} \mathrm{H}\right)\left(\mu_{3} \mathrm{~S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)\right.\right.}} \tag{2}\\
& {\left[\mathrm{Ru}_{3}\left(\mu_{3} \mathrm{~S}\right)(\mathrm{CO})_{9}\right]^{2-} \xrightarrow{\left[\mathrm { O } \left\{{\left.\left.\mathrm{Au}\left(\mathrm{PPh}_{3}\right)_{3}\right\}\right]^{+}}^{\mathrm{Au}_{2}} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)_{2}\right.\right.}} \tag{3}
\end{align*}
$$

separated by chromatography. The overall yields were only moderate, with the $\mathrm{Au}_{2} \mathrm{Ru}_{3}$ cluster 3 being the dominant product. A better route to the mono-gold cluster 1 involves the reaction between the anions and $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right)$ in the presence of $\mathrm{Tl}\left[\mathrm{PF}_{6}\right]$ as a halide-abstractor [5,20]. Although we have found previously that the trigold-oxonium reagent commonly adds up to three $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ moieties to monoanionic clusters [$7,13,35$], we have found no evidence for the formation of such species in the present work.

In an analogous sequence, $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$, was deprotonated by $\mathrm{K}\left[\mathrm{HBBu}_{3}{ }_{3}\right]$, and the reaction with $\mathrm{AuCl}\left(\mathrm{PPh}_{3}\right) / \mathrm{Tl}\left[\mathrm{PF}_{6}\right]$ afforded $\mathrm{Ru}_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO}){ }_{9}\left(\mathrm{PPh}_{3}\right)$ (2) in reasonable yields. In addition, significant quantities of the $\mu_{3}-\mathrm{S}$ cluster (1) were isolated, which indicated that cleavage of the $\mathrm{S}-\mathrm{C}$ bond of the $\mu_{3}-\mathrm{SBu}^{t}$ group was occurring during the deprotonation stêp. This was confirmed in a separate experiment; a mixture of $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$ and $\left[\mathrm{HBBu}_{3}{ }^{5}\right]^{-}$was allowed to react to completion and the resulting cluster anions protonated by $\mathrm{H}_{3} \mathrm{PO}_{4}$. The products were $\mathrm{HRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)(\mathrm{CO})_{9}$ and $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ in a $5 / 1$ ratio.

Although complexes 1 and $\mathbf{3}$ were also characterised by fast atom bombardment (FAB) mass spectrometry [41] it was decided to confirm the identifies of $1-3$ by full crystal structure analyses.

The structure of $\mathrm{HRu} u_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$ (1)
The overall geometry is shown in Fig. 1. There is a triangular array of ruthenium atoms capped on one face by the $\mu_{3}-\mathrm{S}$ ligand. The $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group bridges one
$\mathrm{Ru}-\mathrm{Ru}$ edge, generating a butterfly metal core, while the hydride ligand, located in the structure analysis, lies across an adjacent edge. The structure is therefore that expected on replacing one of the hydrido ligands of $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ [42] by an isolobal $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ moiety [27].

The $\mathrm{Au}-\mathrm{Ru}$ distances (average $2.748 \AA$) are towards the shorter end of the range normally found for such bonds. The $R u-R u$ bond lengths are all different which is expected since each $R u$ is chemically distinct. The shortest $(R u(2)-R u(3), 2.737 \AA)$ is unbridged while the H -bridged $(\mathrm{Ru}(1)-\mathrm{Ru}(3), 2.885 \AA$) and the Au-bridged $(\operatorname{Ru}(1)-\operatorname{Ru}(2), 2.933 \AA)$ examples are progressively longer, in accord with normal trends. Despite the inequivalence of the three ruthenium atoms the $\mu_{3}-S$ ligand is only slightly displaced away from the most highly-substituted $\mathrm{Ru}(1)$; individual $\mathrm{Ru}-\mathrm{S}$ distances are slightly but significantly shorter than in $\mathrm{H}_{2} \mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}$ [42].

The structure of $\mathrm{Ru} u_{3} \mathrm{Au}\left(\mu_{3}-\mathrm{SBu} u^{t}\right)\left(\mathrm{CO}_{9}\left(\mathrm{PPh}_{3}\right)\right.$ (2)
The overall geometry of $\mathbf{2}$ is shown in Fig. 2. Again the $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group bridges one edge of an isosceles triangle of ruthenium atoms, which is capped by the $\mu_{3}-\mathrm{SBu}^{\mathrm{t}}$ ligand. The butterfly angle for this cluster is unusually large (see below).

The $\mu_{3}-\mathrm{SBu}^{\mathrm{t}}$ group is symmetrically bonded to all three ruthenium atoms, with the $\mathrm{Bu}^{\mathrm{t}}-\mathrm{S}$ vector making an angle of 87.2° with the Ru_{3} plane. The $\mathrm{Ru}-\mathrm{S}$ distances are $0.05 \AA$ shorter than those found in 1 as a result of stronger bonding from the formally $5 e$ donor ligand, compared with the $4 e \mu_{3}-\mathrm{S}$ ligand in 1. However, the $\mathrm{Ru}-\mathrm{S}$ bonds in 2 are ca. $0.03 \AA$ longer than those in $\mathrm{Ru}_{3}\left(\mu_{3}-\mathrm{SBu}^{\mathrm{t}}\right)\left(\mu_{3}-\mathrm{C}_{7} \mathrm{H}_{7}\right)(\mathrm{CO})_{6}$, in which the electron-withdrawing $\mathrm{C}_{7} \mathrm{H}_{7}$ ligand encourages even stronger $\mathrm{S} \rightarrow \mathrm{Ru}_{3}$ donation [38].

The AuRu_{2} triangle of 2 is slightly larger than the equivalent part of $\mathbf{1}$ but it is unclear whether this arises because of the different hinge angle, or whether the electronic properties of the sulphur ligands are responsible. The $R u(1)-R u(3)$ and $R u(2)-R u(3)$ bond lengths of 2 lie between those of the H-bridged and non-bridged ones of 1 .

The structure of $R u_{3} A u_{2}\left(\mu_{3}-S\right)(C O)_{9}\left(\mathrm{PPh}_{3}\right)_{2}$ (3)

This complex is illustrated in Fig. 3. It consists of an $\mathrm{Au}_{2} \mathrm{Ru}_{3}$ trigonal-bipyramidal core with Au atoms in an apical and an equatorial site. This metallic unit is symmetrically capped on the Ru_{3} face by a $\mu_{3}-\mathrm{S}$ atom. The cluster is formally derived from 1 by removing the H ligand and inserting the second $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group between the wing tips of the AuRu_{3} butterfly. This change results in slightly increased $\mathrm{Au}-\mathrm{Ru}, \mathrm{Ru}-\mathrm{Ru}$ and $\mathrm{S}-\mathrm{Ru}$ bond lengths, although the effects are surprisingly small. The $\mathrm{Au}-\mathrm{Au}$ bond length of $2.967 \AA$ is unexceptional as are all the $\mathrm{Au}-\mathrm{Ru}$ bonds, which range from 2.783-2.866 \AA. Individual differences arise no doubt from the packing requirements of adjacent ligands. Not unexpectedly the overall geometry differs in only minor detail from that of $\mathrm{Ru}_{3} \mathrm{Au}_{2}\left(\mu_{3^{-}}\right.$ $\mathrm{S})(\mathrm{CO})_{8}\left(\mathrm{PPh}_{3}\right)_{3}[10]$.

The butterfly angle in 1 and 2

The most striking difference between 1 and 2 is the $A u R u_{2} / R u_{3}$ dihedral angles of 119.4° in the former and 147.5° in the latter. This means that in 1 the $\mathrm{Au}(1)$, $\mathrm{Ru}(1), \mathrm{Ru}(2)$ and S atoms are nearly coplanar whereas the $\mathrm{Au}(1) \mathrm{Ru}(1) \mathrm{Ru}(2)$ /

TABLE 6
DIHEDRAL ANGLES IN AuRu ${ }_{3}$ BUTTERFLY CLUSTERS

$\mathrm{AuRu}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{S}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$	119.4°	this work
$\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{SBu}^{2}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$	147.5°	this work
$\mathrm{AuRu}_{3}(\mu-\mathrm{H})\left(\mu_{3}-\mathrm{PPh}\right)(\mathrm{CO})_{9}\left(\mathrm{PMe}_{2} \mathrm{Ph}\right)$	106.2°	$[3]$
$\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{COMe}\right)(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)$	117°	$[4]$
$\mathrm{AuRu}_{3}(\mu-\mathrm{H})_{2}\left(\mu_{3}-\mathrm{COMe}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$	111.8°	$[4]$
$\mathrm{AuRu}_{3}(\mu-\mathrm{Cl})(\mathrm{CO})_{10}\left(\mathrm{PPh}_{3}\right)$	117.2°	$[12]$
$\mathrm{AuRu}_{3}\left(\mu_{3}-\mathrm{C}_{2} \mathrm{Bu}^{\dagger}\right)(\mathrm{CO})_{9}\left(\mathrm{PPh}_{3}\right)$	129.3°	$[6]$

$\mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{S}(1)$ dihedral angle in $\mathbf{2}$ is 146.5°. This marked change in butterfly angle has remarkably little effect on the dispositions of the CO ligands (see Fig. 1 and 2). The hinge angle of $\mathbf{2}$ is in fact very similar to the $\mathrm{Au}(1) \mathrm{Ru}(1) \mathrm{Ru}(2) / \mathrm{Ru}(1) \mathrm{Ru}(2) \mathrm{Ru}(3)$ dihedral angle in $3\left(146.5^{\circ}\right)$ where the extra $\mathrm{Au}\left(\mathrm{PPh}_{3}\right)$ group holds the wing tips apart.

Although the butterfly angle in such tetranuclear clusters has been shown to be very flexible [29], the difference of 28° in this parameter for $\mathbf{1}$ and $\mathbf{2}$ is presumably caused by the electronic differences between $\mu_{3}-\mathrm{S}$ and $\mu_{3}-\mathrm{SBu}^{1}$ ligands. Table 6 lists the butterfly angles found for a range of related clusters and it is clear that the normal range is $106-120^{\circ}$, so that the angle observed for 1 conforms to precedent whereas that of 2 is unusually large. Carty et al. [43] have shown a correlation between dihedral angles in tetranuclear butterfly cluster and the formal electron count; 62 electron clusters exhibiting $90-117^{\circ}$ while 64 electron clusters give $140-180^{\circ}$ angles. However, all the clusters in Table 6 give a formal 62-electron count. An extension of Carty et al.'s conclusions would suggest that the 5 -electron $\mu_{3}-\mathrm{SBu}^{\mathrm{t}}$ group is more strongly electron-donating to the cluster core than the ligands associated with the other clusters in Table 6. Consistent with this, it was noted above that the $\mathrm{Ru}-\mathrm{S}$ bonds in $\mathbf{2}$ are relatively short.

Acknowledgements

We thank the Australian Research Grants Scheme and the New Zealand University Grants Committee for financial support. ObS is a recipient of a Malaysian Government Scholarship (Universiti Sains Malaysia). We are grateful to Dr. P. Steel, University of Canterbury for collection of X-ray data.

References

[^1]8 B.F.G. Johnson, J. Lewis, J.N. Nicholls, J. Puga and K.H. Whitmire, J. Chem. Soc. Dalton Trans., (1983) 787.

9 M.J. Freeman, M. Green, A.G. Orpen, I.D. Salter and F.G.A. Stone J. Chem. Soc., Chem. Commun., (1983) 1332.

10 L.J. Farrugia, M.J. Freeman, M. Green, A.G. Orpen, F.G.A. Stone and I.D. Salter, J. Organomet. Chem., 249 (1983) 273.
11 B.F.G. Johnson, J. Lewis, W.J.H. Nelson, J. Fuga, P.R. Raithby, D. Braga, M. McPartlin and W. Clegg, J. Organomet. Chem., 243 (1983) C13.
12 G. Lavigne, R. Papageorgiou, and J.J. Bonnet, Inorg. Chem., 23 (1984) 609.
13 M.I. Bruce, O.bin Shawkataly and B.K. Nicholson, J. Organomet. Chem., 275 (1984) 223.
14 M.I. Bruce, E. Horn, O.bin Shawkataly and M.R. Snow, J. Organomet. Chem., 280 (1985) 289.
15 B.F.G. Johnson, D.A. Kaner, J. Lewis and P.R. Raithby, J. Organomet. Chem., 215 (1981) C33.
16 B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and M.J. Taylor, Polyhedron, 1 (1982) 105.
17 K. Burgess, B.F.G. Johnson and J. Lewis, J. Chem. Soc., Dalton Trans., (1983) 1179.
18 B.F.G. Johnson, J. Lewis, W.J.H. Nelson, M.D. Vargas, D. Braga and M. McPartlin, J. Organomet. Chem., 246 (1983) C69.
19 B.F.G. Johnson, J. Lewis, W.J.H. Nelson, P.R. Raithby and M.D. Vargas, J. Chem. Soc. Chem. Commun., (1983) 608.
20 B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and M.J. Taylor, J. Chem. Soc. Chem. Commun., (1982) 314.

21 B.F.G. Johnson, J. Lewis, P.R. Raithby and A. Sanders, J. Organomet. Chem., 260 (1984) C29.
22 J. Ellis, J. Am. Chem. Soc., 103 (1981) 6106.
23 J.A. Iggo, M.J. Mays, P.R. Raithby and K. Henrick, J. Chem. Soc., Dalton Trans., (1984) 633.
24 M.I. Bruce and O.bin Shawkataly, unpublished results.
25 B.F.G. Johnson, D.A. Kaner, J. Lewis and M.J. Rosales, J. Organomet. Chem., 238 (1982) C73.
26 B.F.G. Johnson, D.A. Kaner, J. Lewis, P.R. Raithby and M.J. Rosales, J. Organomet. Chem., 231 (1982) C59.

27 C.E. Briant, K.P. Hall and D.M.P. Mingos, J. Chem. Soc., Chem. Commun., (1983) 843.
28 E. Roland, K. Fischer and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 22 (1983) 326.
29 M.I. Bruce and B.K. Nicholson, J. Organomet. Chem., 250 (1983) 627.
30 C.E. Briant, K.P. Hall and D.M.P. Mingos, J. Chem. Soc., Chem. Commun., (1983) 843.
31 A.L. Casalnuovo, L.H. Pignolet, J.W.A. van der Velden, J.J. Bour and J.J. Steggerda, J. Amer. Chem. Soc., 105 (1983) 5957.
32 C.E. Briant, R.W.M. Wardle and D.M.P. Mingos, J. Organomet. Chem., 267 (1984) C49; C.E. Briant, D.I. Gilmour and D.M.P. Mingos, J. Organomet. Chem., 267 (1984) C52.

33 J.W. Lauher and K. Wald, J. Am. Chem. Soc., 103 (1981) 7648.,
34 M.I. Bruce and B.K. Nicholson, J. Chem. Soc. Chem. Commun., (1982) 1141.
35 M.I. Bruce and B.K. Nicholson, Organometallics, 3 (1984) 101.
36 P. Braunstein, J. Rose, Y. Dusausoy and J.P. Mangeot, C.R. Seances Acad. Sci., Ser 2, 294 (1982) 967.
37 K. Fischer, M. Muller and H. Vahrenkamp, Angew. Chem., Int. Ed. Engl., 23 (1984) 140.
38 T.A. Cresswell, J.A.K. Howard, F.G. Kennedy, S.A.R. Knox and H. Wadepohl, J. Chem. Soc. Dalton Trans., (1981) 2220.
39 A.N. Nesmeyanov, E.G. Perevalova, Y.T. Struchkov, M.Y. Antipin, K.I. Grandberg and V.P. Dyadchenko, J. Organomet. Chem., 201 (1980) 343.
40 G.M. Sheldrick SHELX 76, University of Cambridge, 1976.
41 T. Blumenthal, M.I. Bruce, O. bin Shawkataly, B.N. Green and I. Lewis, J. Organomet. Chem., 269 (1984) C10.

42 R.D. Adams and D.A. Katahira, Organometallics, 1 (1982) 53.
43 A.J. Carty, S.A. MacLaughlin, J. Van Wagner and N.J. Taylor, Organometallics, 1 (1982) 1013.
44 M.I. Bruce, E. Horn, J.G. Matisons and M.R. Snow, J. Organomet. Chem., 286 (1985) 271.

[^0]: * For Part XXXVIII, see ref. 44.

[^1]: 1 W.L. Gladfelter and G.L. Geoffroy, Adv. Organomet. Chem., 18 (1980) 207.
 2 M.I. Bruce, J. Organomet. Chem., 257 (1983) 453.
 3 M.J. Mays, P.R. Raithby, P.L. Taylor and K. Henrick, J. Organomet. Chem., 224 (1982) C45; J. Chem. Soc. Dalton Trans., (1984) 959.
 4 L.W. Bateman, M. Green, J.A.K. Howard, K.A. Mead, R.M. Mills, I.D. Salter, F.G.A. Stone and P. Woodward, J. Chem. Soc., Chem., Commun., (1982) 773; J. Chem. Soc. Dalton Trans., (1983) 2599. J.A.K. Howard, I.D. Salter and F.G.A. Stone, Polynedron, 3 (1984) 567.

 5 J. Lewis and B.F.G. Johnson, Pure Appl. Chem., 54 (1982) 97.
 6 P. Braunstein, G. Predieri, A. Tiripicchio and E. Sappa, Inorg. Chim. Acta, 63 (1982) 113.
 7 M.I. Bruce and B.K. Nicholson, J. Organomet. Chem., 252 (1983) 243.

